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Waveform

= Time-domain representation of sound .
— Show the amplitude over time osl
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= Amplitude envelope 02
— Short-term loudness: e.g. sound level meter °
— Computed by various methods
* max-peak picking
« root-mean-square (RMS) sl
» Hilbert transform §

-0.21

-04 1

-06 1

0 0.5 1 1.5 2 25
— ADSR

« The amplitude envelope of musical sounds are often described with attack,
decay, sustain and release.

— Also used for dynamic range compression: e.g. compressor, expander



Example: Waveform and Amplitude Envelopes

0.25

= RMS
0.2 - Max-Peak| ]|

0.15
0.1

0.05

-0.05
-0.1
-0.15

-0.2

-0.25

Piano C4 Note

: ' : -0.3
0 0.5 1 1.5 2

0.4

~——=RMS
- Max-Peak 1

0 0.5 1 1.5 2 2.5

Flute A4 Note



Spectrogram

= Time/Frequency-domain representation of sound
— Show the amplitude envelope of individual frequency components over time
— Better representation to observe pitch and timbre characteristics
— Often called “Sonogram”

= Visualization
— 2D color map or waterfall



Example: Spectrogram - 2D color map
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Example: Spectrogram - 3D waterfall

frequency-Hz 8000 2 time-seconds
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Phasor

= A complex number representing a sinusoidal function with

— Amplitude, angular frequency, initial phase
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Fourier Series

= Any signal x(t) with period T can be represented as a sum of phasors
— The periods of phasors are T, T/2, T/3, ..., T/n, ...
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= Web Audio Examples
— http://codepen.io/anon/pen/jPGIMK

= How can you get the coefficients?




Orthogonality of Sinusoids

= The phasors are orthogonal to each other unless they have the same
frequency
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= Using the orthogonality
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Discrete Fourier Transform (DFT)

= Discrete-time version of Fourier series
x(n)=[x()ax19x23”°,-x1\]_1]

= The number of discrete samples, N, corresponds on the period T
— We assume that the segment x(n) is repeated every N samples

= Then, we can directly derive DFT and Inverse DFT from

N-1

N-—
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Discrete Fourier Transform

= Discrete Fourier Transform
N-—1
_ .(ann)
X0 = Y xme W) = Xp (k) + X, (k)

n=0

— Magnitude spectrum: A(k) = \/XR(k)2 + X;(k)?

X1 (k)

— Phase spectrum: d(k) = arctan(X B
R

)

= We use the magnitude spectrum to display spectrograms

11



DFT Sinusoids

Real Part Imaginary Part
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Source: the JOS DFT book



Fast Fourier Transform

= Matrix multiplication view of DFT

LX) ] [0 s sS(N=1) 1 =(0)
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Source: the JOS DFT book

= |n fact, we don't compute this directly. There is a more efficiently way,
which is called “Fast Fourier Transform (FFT)”
— Complexity reduction by FFT: O(N?) = O(Nlog,N)
— Divide and conquer



Examples of DFT
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Short-Time Fourier Transform (STFT)

= DFT assumes that the signal is stationary
— Itis not a good idea to apply DFT to a long and dynamically changing signal like music
— Instead, we segment the signal and apply DFT separately

= Short-Time Fourier Transform

N-1 h :hop size

_ .(ann) o
X(k 1) = 2 wn)x(n+1-h)e A w(n): window
n=0 N : FFT size

= This produces 2-D time-frequency representations
— Get “spectrogram” from the magnitude
— Parameters: window size, window type, FFT size, hop size
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Windowing

= Types of window functions
— Trade-off between the width of main-lobe and the level of side-lobe

Rectangular Triangular Blackmann

Amplitude

Magnitude

aof L S ide-lobe level
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Short-Time Fourier Transform (STFT)
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Example: Pop Music
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Example: Deep Note
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Time-Frequency Resolutions in STFT

» Trade-off between time- and frequency-resolution by window size

High time-resolution spectrogram
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