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Waveform

§ Time-domain representation of sound
– Show the amplitude over time 

§ Amplitude envelope 
– Short-term loudness: e.g. sound level meter 
– Computed by various methods

• max-peak picking 
• root-mean-square (RMS)
• Hilbert transform

– ADSR
• The amplitude envelope of musical sounds are often described with attack, 

decay, sustain and release.
– Also used for dynamic range compression: e.g. compressor, expander
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Example: Waveform and Amplitude Envelopes
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Spectrogram

§ Time/Frequency-domain representation of sound
– Show the amplitude envelope of individual frequency components over time 
– Better representation to observe pitch and timbre characteristics
– Often called “Sonogram”

§ Visualization
– 2D color map or waterfall 
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Example: Spectrogram - 2D color map
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Example: Spectrogram - 3D waterfall
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Phasor

§ A complex number representing a sinusoidal function with  
– Amplitude, angular frequency, initial phase 
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Fourier Series

§ Any signal x(t) with period T can be represented as a sum of phasors
– The periods of phasors are T, T/2, T/3, ..., T/n, …

§ Web Audio Examples
– http://codepen.io/anon/pen/jPGJMK

§ How can you get the coefficients?
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Orthogonality of Sinusoids

§ The phasors are orthogonal to each other unless they have the same 
frequency 

§ Using the orthogonality 
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Discrete Fourier Transform (DFT)

§ Discrete-time version of Fourier series

§ The number of discrete samples, N, corresponds on the period T
– We assume that the segment x(n) is repeated every N samples

§ Then, we can directly derive DFT and Inverse DFT from 
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Discrete Fourier Transform

§ Discrete Fourier Transform

– Magnitude spectrum:

– Phase spectrum: 

§ We use the magnitude spectrum to display spectrograms
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DFT Sinusoids
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𝑠A∗ 𝑛 = 𝑒%
BCAT
^ 𝑠e∗ 𝑛

𝑠B∗ 𝑛

𝑠_∗ 𝑛

𝑠H∗ 𝑛

𝑠S_∗ 𝑛 = 𝑠f∗ 𝑛

𝑠SB∗ 𝑛 = 𝑠g∗ 𝑛

𝑠Se∗ 𝑛 = 𝑠h∗ 𝑛

𝑠Si∗ 𝑛 = 𝑠i∗ 𝑛

𝑁 = 8

Source: the JOS DFT book



Fast Fourier Transform

§ Matrix multiplication view of DFT

§ In fact, we don’t compute this directly. There is a more efficiently way, 
which is called “Fast Fourier Transform (FFT)”
– Complexity reduction by FFT: O(N2) à O(Nlog2N) 
– Divide and conquer 
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Source: the JOS DFT book



Examples of DFT
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Short-Time Fourier Transform (STFT)

§ DFT assumes that the signal is stationary
– It is not a good idea to apply DFT to a long and dynamically changing signal like music
– Instead, we segment the signal and apply DFT separately

§ Short-Time Fourier Transform 

§ This produces 2-D  time-frequency representations
– Get “spectrogram” from the magnitude
– Parameters: window size, window type, FFT size, hop size 

15
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Windowing

§ Types of window functions
– Trade-off between the width of main-lobe and the level of side-lobe
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Main-lobe	width

Side-lobe	level



Short-Time Fourier Transform (STFT)

1750%	overlap	

Source: the JOS SASP book



Example: Pop Music

18



Example: Deep Note

19



Time-Frequency Resolutions in STFT

§ Trade-off between time- and frequency-resolution by window size
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< Long window >
high freq.-resolution
low time-resolution

< Short window >
low freq.-resolution
high time-resolution 


